
J Stat Phys (2007) 128: 1125–1137
DOI 10.1007/s10955-007-9358-1

A Fast Algorithm for Simulating the Chordal
Schramm–Loewner Evolution

Tom Kennedy

Received: 15 October 2006 / Accepted: 31 May 2007 / Published online: 3 July 2007
© Springer Science+Business Media, LLC 2007

Abstract The Schramm–Loewner evolution (SLE) can be simulated by dividing the time
interval into N subintervals and approximating the random conformal map of the SLE by
the composition of N random, but relatively simple, conformal maps. In the usual imple-
mentation the time required to compute a single point on the SLE curve is O(N). We give
an algorithm for which the time to compute a single point is O(Np) with p < 1. Simulations
with κ = 8/3 and κ = 6 both give a value of p of approximately 0.4.

1 Introduction

The Schramm–Loewner evolution (SLE) is a stochastic process that produces a random
curve in the complex plane. In this paper we will be concerned with chordal SLE in which
the random curve, the SLE “trace”, lies in the upper half plane and goes from 0 to ∞. The
classical Loewner equation is

∂tgt (z) = 2

gt (z) − Ut

(1)

with the initial condition g0(z) = z. Here Ut is a real-valued “driving function”. The equation
defines a one parameter family gt of conformal maps from a simply connected subset of the
upper half plane onto the upper half plane. SLE is obtained by taking Ut = √

κBt where
κ > 0 is a parameter and Bt is a Brownian motion with mean zero and variance t . For
further discussion of SLE we refer the reader to [7, 10] and the original references [8, 9].

The most common method for simulating SLE is not to numerically solve the above dif-
ferential equation. Instead one partitions the time interval into N subintervals and approxi-
mates gt by the composition of a sequence of N conformal maps which are approximations
to the solution of the Loewner equation over the subintervals. Computing a point on the
SLE trace requires evaluating the composition of roughly N conformal maps and so takes a

T. Kennedy (�)
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
e-mail: tgk@math.arizona.edu

1126 J Stat Phys (2007) 128: 1125–1137

Fig. 1 Time per point computed
as a function of N , the number of
subintervals in the partition of the
time interval for κ = 8/3. The
top curve is the usual algorithm;
the bottom curve is the new
algorithm. The lines shown have
slopes 1 and 0.4 (color online)

Fig. 2 Time per point computed
as a function of N , the number of
subintervals in the partition of the
time interval for κ = 6. The lines
shown have slopes 1 and 0.4
(color online)

time O(N). We will refer to the time it takes to compute one point on the SLE trace as the
“time per point”.

The goal of this paper is to give an algorithm for which the time per point is O(Np)

with p < 1. We do not prove that our algorithm does this. The time our algorithm takes to
generate an SLE curve depends on the behavior of the particular curve. For certain atypical
curves, our algorithm will not be faster than the usual algorithm. So a rigorous analysis of
our algorithm is a daunting task. We have studied the behavior of the algorithm by simulation
for κ = 8/3 and κ = 6. For both of these values of κ , the time per point for our algorithm
is O(Np) with p around 0.4. Figures 1 and 2 show log-log plots of the time per point
as a function of N for the usual algorithm and for our new algorithm. In the first figure
κ = 8/3, and in the second it is 6. Although the behavior of the SLE trace is qualitatively
different for these two values of κ , the behavior of the time required for the simulation is
quite similar. The straight lines show fits by c1N for the usual algorithm and by c2N

0.4 for
our algorithm. For N = 100,000 our algorithm is faster by approximately a factor of 14 and
for N = 1,000,000 our algorithm is faster by approximately a factor of 56.

There is an inverse problem that is closely related to the present paper. Given a simple
curve in the upper half plane, compute the corresponding driving function in the Loewner
equation. An important application of this inverse problem is studying if a family of random
curves is SLE. Given a large sample of the curves, one computes the corresponding samples

J Stat Phys (2007) 128: 1125–1137 1127

of the driving function and then tests if they are a Brownian motion. This was done for
interfaces in two-dimensional spin glass ground states in [1, 5] and for certain isolines in
two-dimensional models of turbulence in [3, 4]. The methods of this paper apply to this
inverse problem as well. The naive implementation of the zipper algorithm to compute the
driving function for a curve with N points runs in a time O(N2). Using the methods of this
paper, the algorithm runs in a time O(N1.35). This fast algorithm is studied in [6].

In Sect. 2 we explain the standard method for “discretizing” SLE. A particular example
was studied by Bauer [2]. The material in this section is well known but does not seem to
have appeared in the literature yet. In Sect. 3 we explain our new algorithm. The algorithm
involves several parameters, so in Sect. 4 we study how the error and time required for the
algorithm depend on these parameters. The appendix gives some power series needed in
particular implementations of the algorithm. C++ code implementing the new algorithm
may be downloaded from the author’s homepage.

2 Discretizing SLE

We are going to approximate SLE by a “discrete SLE”. The term discrete SLE is a bit
misleading. The random process we define produces continuous curves in the upper half
plane. The plane is not replaced by a lattice. Let 0 = t0 < t1 < t2 < · · · < tn = 1 be a partition
of the time interval [0, t]. (Thanks to the scaling property of SLE, it is no loss of generality to
take the time interval to be [0,1].) The times tk play a special role, but the random curves are
still defined for all time. We can think of our discrete approximation as the result of replacing
the Brownian motion in the driving function by some stochastic process that approximates
(or even equals) the Brownian motion at the times tk , and is defined in between these times
so that the Loewner equation may be solved explicitly.

We begin by reviewing some facts about the Schramm–Loewner evolution for the upper
half-plane,

∂tgt (z) = 2

gt (z) − √
κBt

(2)

with g0(z) = z. The set Kt contains the points z in the upper half-plane for which the solution
to this equation no longer exists at time t . Let t, s > 0. The map gt+s maps H \Kt+s onto H.
We can do this in two stages. We first apply the map gs . This maps H\Ks onto H, and it maps
H \ Kt+s onto H \ gs(Kt+s \ Ks). Let ĝt be the conformal map that maps H \ gs(Kt+s \ Ks)

onto H with the usual hydrodynamic normalization. By the uniqueness of these maps,

gs+t = ĝt ◦ gs, i.e., ĝt = gs+t ◦ g−1
s . (3)

Then

d

dt
ĝt (z) = d

dt
gs+t ◦ g−1

s (z) = 2

gs+t ◦ g−1
s (z) − Us+t

= 2

ĝt (z) − Us+t

. (4)

Note that ĝ0(z) = z. Thus ĝt (z) is obtained by solving the Loewner equation with driving
function Ût = Us+t . This driving function starts at Us , and so the K̂t associated with ĝt starts
growing at Us . In our approximation the driving function will be sufficiently nice that K̂t is
just a curve which starts at Us .

We now return to the partition 0 = t0 < t1 < t2 < · · · < tn = 1, and define

Gk = gtk ◦ g−1
tk−1

. (5)

1128 J Stat Phys (2007) 128: 1125–1137

So

gtk = Gk ◦ Gk−1 ◦ Gk−2 ◦ · · · ◦ G2 ◦ G1. (6)

By the remarks above, Gk(z) is obtained by solving the Loewner equation with driving
function Utk−1+t for t = 0 to t = Δk , where Δk = tk − tk−1. Note that Gk maps H minus a
set “centered” around Utk−1 to H. If we consider Gk(z + Utk−1+t) − Utk−1 , it is obtained by
solving the Loewner equation with driving function Utk−1+t −Utk−1 for t = 0 to t = Δk . This
driving function starts at 0 and ends at δk where δk = Utk − Utk−1 . So this conformal map
takes H minus a set “centered” around the origin onto H.

The approximation to the SLE trace is given by γ (t) = g−1
t (Ut). Let zk = g−1

tk
(Utk). We

will only consider the points on this curve which correspond to times t = tk . One could
consider other points on the curve, but the distance between consecutive zk is already of the
order of the error in our approximation, so there is little reason to consider more points. The
points zk are given by

zk = G−1
1 ◦ G−1

2 ◦ · · · ◦ G−1
k−1 ◦ G−1

k (Utk). (7)

We would like to rewrite this using conformal maps that depend only on the change in Ut

over the time intervals. Define

hk(z) = G−1
k (z + Utk) − Utk−1 . (8)

So

zk = h1 ◦ h2 ◦ · · · ◦ hk−1 ◦ hk(0). (9)

Recall that if we solve the Loewner equation with driving function Utk−1+t − Utk−1 for t = 0
to t = Δk , we get gk(z) where

gk(z) = Gk(z + Utk−1) − Utk−1 . (10)

Letting fk(z) = g−1
k (z), we have

fk(z) = G−1
k (z + Utk−1) − Utk−1 (11)

and so hk(z) = fk(z + δk). As noted above, fk maps H to H minus a curve that starts at 0.
The driving function ends at δk , so fk(δk) is the tip of the curve. It follows that hk(z) maps
H onto H minus a curve starting at 0 and hk(0) is the tip of the curve. Thus we have the
following simple picture for (9). The first map hk welds together a small interval on the real
axis containing the origin to produce a small cut. The origin is mapped to the tip of this cut.
The second map welds together a (possibly different) small interval in such a way that it
produces another small cut. The original cut is moved away from the origin with its base
being at the tip of the new cut. This process continues. Each map introduces a new small cut
whose tip is attached to the image of the base of the previous cut.

The key idea is to define Ut for tk−1 ≤ t ≤ tk so that gk(z) may be explicitly computed.
There are two constraints on gk . The curve must have capacity 2Δk and gk must map the tip
of the curve to δk . Given any simple curve satisfying these two constraints and starting at the
origin, it will be the solution of the Loewner equation for some driving function which goes
from 0 to δk over the time interval [0,Δk]. Different choices of this interpolating curve give
us different discretizations. Before we discuss particular discretizations, we will discuss the
definitions of Δk and δk .

J Stat Phys (2007) 128: 1125–1137 1129

The simplest choice for Δk is to use a uniform partition of the time interval, Δk = 1/N .
However, if we use a uniform partition and look at the resulting points zk , they appear to be
farther apart on average at the beginning of the curve than at the end. To understand this,
consider the case of κ = 8/3 which is believed to correspond to the self-avoiding walk. Let
ω(s) denote the scaling limit of the self-avoiding walk. With its natural parameterization
we have Eω(s)2 = cs2ν where ν = 3/4 and c is a constant. If we take points at equally
spaced times using this parameterization we will get points on the walk that are roughly
equally distant. For SLE with its parameterization using capacity, we have Eω(t)2 = ct for
some constant c. To match these two parameterizations in an average sense we should take
t = s2ν . Thus to get points approximately equally spaced on the SLE curve, we should take
tk = (k/N)2ν .

The δk should be chosen so that the stochastic process Ut will converge to
√

κ times
Brownian motion as N → ∞. One possibility is take the δk to be independent normal ran-
dom variables with mean zero and variance κΔk . If we do this, then Ut and

√
κBt will have

the same distributions if we only consider times chosen from the tk . Another possibility is
to take the δk to be independent random variables with δk = ±√

κΔk where the choices of
+ and − are equally probable. If we use this choice with the uniform partition of the time
interval, then we are approximating the Brownian motion by a simple random walk.

We now consider specific choices of the interpolating curve used for the discretization.
A popular choice is the following. Let C be a line segment starting at the origin with a
polar angle of απ . gk maps H \ C onto H. There are two degrees of freedom for the line
segment—its length and α. There are two constraints—the line segment must have capacity
2Δk and the tip of the segment must get mapped to δk .

Consider the map

φ(z) = (z + y)1−α(z − x)α (12)

where x, y > 0. It maps the half plane onto the half plane minus a line segment which starts
at the origin and forms an angle α with the positive real axis. The interval [−y, x] gets
mapped onto the slit. The length of this interval determines the length of the slit. Shifting
this interval (relative to 0) does not change the length of the slit. To obtain the map gk , we
must choose x and y so that gk satisfies the hydrodynamic normalization and has capacity
2Δk . Tedious but straightforward calculation shows if we let

ft (z) =
(

z + 2
√

t

√
α

1 − α

)1−α(
z − 2

√
t

√
1 − α

α

)α

(13)

then f −1
t (z) satisfies the hydrodynamic normalization and has capacity 2t . In particular,

fk(z) is given by the above equation with t = Δk . We know from the general theory that
gt (z) = f −1

t (z) satisfies the Loewner equation (1) for some driving function Ut . Some cal-
culation then shows that

Ut = cα

√
t (14)

where

cα = 2
1 − 2α√
α(1 − α)

. (15)

For the map gk we need Utk − Utk−1 = δk , and so

δk = cα

√
Δk. (16)

1130 J Stat Phys (2007) 128: 1125–1137

This equation determines α. (α depends on k.)
Define

v = δ2
k

Δk

. (17)

Then squaring (16) gives

c2
α = v (18)

which leads to

16α2 + vα2 − 16α − vα + 4 = 0 (19)

and so

α = 1

2
± 1

2

√
v

16 + v
. (20)

We take the choice with α < 1/2 if δk > 0 and the choice with α > 1/2 if δk < 0. Using
hk(z) = fk(z + δk) we find that

hk(z) =
(

z + 2

√
Δk(1 − α)

α

)1−α(
z − 2

√
Δkα

1 − α

)α

. (21)

Note how confusingly similar this formula is to (13).
Another discretization is to take

hk(z) =
√

z2 − 4Δk + δk. (22)

This conformal map produces a vertical slit based at δk with capacity 2Δk . It does not map
the origin to the tip of the slit. So composing these maps does not produce a curve. Nonethe-
less, this discretization converges to SLE [2]. A vertical slit corresponds to a constant driving
function. So this discretization corresponds to replacing the Brownian motion by a stochastic
process that is constant on each time subinterval and jumps discontinuously at the times tk .

3 A Faster Algorithm

To motivate what we do in this section, we first consider the speed of the algorithm described
in the previous section. Recall that points on the approximation to the SLE trace are given
by

zk = h1 ◦ h2 ◦ · · · ◦ hk−1 ◦ hk(0). (23)

The number of operations needed to compute a single zk is proportional to k. So to compute
all the points zk with k = 1,2, . . . ,N requires a time O(N2).

It is important to note that the computation of zk does not depend on any of the other zj .
So we can compute a subset of the points zk if we desire. (As an extreme example, if we are
only interested in zN = γ (1), the time required for the computation is O(N) not O(N2).)
For the timing tests in this paper we compute the points zjd with j = 1,2, . . . ,N/d where
d is some integer. But we emphasize that our algorithm works for any choice of the set of
points to compute. For the above algorithm the time grows as N2/d . The time per point
grows as N . We use the time per point throughout this paper to study the efficiency. It is a
natural measure since it depends on how finely we discretize the time interval but not on the

J Stat Phys (2007) 128: 1125–1137 1131

number of points we choose to compute. The total time to compute the SLE trace is given
by the number of points we want to compute on it times the time per point. Our goal is to
develop an algorithm for which the time per point is O(Np) with p < 1.

Our algorithm begins by grouping the functions in (23) into blocks. The number of func-
tions in a block will be denoted by b. Let

Hj = h(j−1)b+1 ◦ h(j−1)b+2 ◦ · · · ◦ hjb. (24)

If we write k as k = mb + l with 0 ≤ l < b, then we have

zk = H1 ◦ H2 ◦ · · · ◦ Hm ◦ hmb+1 ◦ hmb+2 ◦ · · · ◦ hmb+l (0). (25)

The number of compositions in (25) is smaller than the number in (23) by roughly a factor
of b. Unfortunately, even though the hi are relatively simple, the Hj cannot be explicitly
computed. Our strategy is to approximate the hi by functions whose compositions can be
explicitly computed to give an explicit approximation to Hj . For large z, hi(z) is well ap-
proximated by its Laurent series about ∞. One could approximate hi by truncating this
Laurent series. This is the spirit of our approach, but our approximation is slightly different.

Let f (z) be a conformal map from H onto H \ γ [0, t], where γ : [0, t] → H is a curve in
the upper half plane with γ (0) = 0. We assume that f (∞) = ∞, f ′(∞) = ∞ and f (0) =
γ (t). Let a, b > 0 be such that [−a, b] is mapped onto the slit γ [0, t]. So f is real valued on
(−∞,−a] and [b,∞). By the Schwartz reflection principle, f has an analytic continuation
to C \ [−a, b], which we will simply denote by f . Let R = max{a, b}, so f is analytic on
{z : |z| > R} and maps ∞ to itself. Thus f (1/z) is analytic on {z : 0 < |z| < 1/R} and our
assumptions on f imply it has a simple pole at the origin with residue 1. So we have

f (1/z) = 1/z +
∞∑

k=0

ckz
k. (26)

This gives the Laurent series of f about ∞

f (z) = z +
∞∑

k=0

ckz
−k. (27)

If we truncate this Laurent series, it will be a good approximation to f for large z. At first
sight, this Laurent series is the natural approximation to use for f . However, we will use a
different but closely related representation.

Define f̂ (z) = 1/f (1/z). Since f (z) does not vanish on {|z| > R}, f̂ (z) is analytic in
{z : |z| < 1/R}. Our assumptions on f imply that f̂ (0) = 0 and f̂ ′(0) = 1. So f̂ has a power
series of the form

f̂ (z) =
∞∑

j=0

aj z
j (28)

with a0 = 0 and a1 = 1. It is not hard to show that 1/R is the radius of convergence of this
power series. We will refer to this power series as the “hat power series” of f . Note that the
coefficients of the hat power series of f are the coefficients of the Laurent series of 1/f .

The primary advantage of this hat power series over the Laurent series is its behavior
with respect to composition

(f ◦ g)̂(z) = 1/f (1/ĝ(z)) = f̂ (ĝ(z)). (29)

1132 J Stat Phys (2007) 128: 1125–1137

Thus

(f ◦ g)̂ = f̂ ◦ ĝ. (30)

Our approximation for f (z) is to replace f̂ (z) by the truncation of its power series at order n.
So

f (z) = 1

f̂ (1/z)
≈

[
n∑

j=0

aj z
−j

]−1

. (31)

For each hi we compute the power series of ĥi to order n. We then use them and (30)
to compute the power series of Ĥj to order n. Let 1/Rj be the radius of convergence for
the power series of Ĥj . (Rj is easy to compute. It is the smallest positive number such that
Hj(Rj) and Hj(−Rj) are both real.) Now consider (25). If z is large compared to Rj , then
Hj(z) is well approximated using its hat power series. We introduce a parameter L > 1
and use the hat power series to compute Hj(z) whenever |z| ≥ LRj . When |z| < LRj , we
just use (24) to compute Hj(z). The argument of Hj is the result of applying the previous
conformal maps to 0, and so is random. Thus whether or not we can approximate a par-
ticular Hj using its hat power series depends on the randomness and on which zk we are
computing.

4 Choosing the Parameters

Our algorithm depends on three parameters. The integer b is the number of functions in a
block. The integer n is the order at which we truncate the hat power series. The real number
L > 1 determines when we use the hat power series approximation to the block function.
These three parameters control how good our approximation is. We can compute the error
that arises from using the hat power series by computing the discretized SLE curve both
using the hat power series and not using them. We then define the error to be the average
distance between the points on the two curves. Given some desired level of error, we want
to minimize the time subject to the constraint that the error is within the desired tolerance.
There is a completely different kind of error—that introduced by approximating the Brown-
ian motion by some other stochastic process. It should converge to zero as N → ∞. The
nature of this convergence and in particular its dependence on the method of discretization
is an interesting question, but we do not study it in this paper.

The behavior of our algorithm is random in that it depends on the behavior of the partic-
ular SLE sample. Since the behavior of SLE depends qualitatively on κ , one might expect
that the behavior of our algorithm will depend significantly on κ . We have studied the algo-
rithm for κ = 8/3 and κ = 6 and have found that the behaviors for these two values of κ are
remarkably similar. We will restrict our discussion and our plots to the case of κ = 8/3, and
discuss how κ = 6 compares at the end of this section.

We continue to use the time per point (total time divided by the number of points com-
puted) as our measure of the speed of the algorithm. For this new algorithm it is essentially
independent of d , the number of time intervals between consecutive points computed, pro-
vided d is not huge. The computation of the hat power series for the conformal maps Hj

does not depend on how many points we compute. When d is large enough, the time required
for this computation will dominate, and the time per point will no longer be independent
of d .

J Stat Phys (2007) 128: 1125–1137 1133

Fig. 3 Error as a function of n,
the order of the hat power series.
The line is a fit by cL−n (color
online)

Fig. 4 Time per point computed
as a function of n (color online)

We first consider the effect of n. Obviously, as n grows the error should decrease and
the time should increase. Figure 3 shows that as a function of n, the error is approximately
proportional to L−n. Figure 4 shows the growth of the time with respect to n. (In both figures
we have taken N = 100,000, b = 40, and L = 4.)

Next we consider the effect of L. As L increases we use the hat power series approxima-
tion only for larger z and so the error should decrease. However, using the approximation
less frequently will increase the time required. The error decreases with L roughly as L−n

(Fig. 5). The dependence of the time on L shown in Fig. 6 is somewhat surprising. The time
does not grow with L as quickly as one might expect. Eventually, as L gets large the time
will be on the order of the time for the standard algorithm that does not use hat power series,
but this only happens at values of L considerable larger than those shown. (In both figures
we have taken N = 100,000, b = 40, and n = 12.)

Finally we consider the effect of the block size b. It is not clear a priori how the er-
ror and time will depend on b. Increasing b reduces the number of compositions to com-
pute in (25) but it will also increase the radii of convergence Rj which will result in the
hat power series approximation being used less frequently. Figure 7 shows that the error
does not depend strongly on b and so b should just be chosen to minimize the time. This
choice depends significantly on N . (In this figure we have taken N = 100,000, n = 12, and
L = 4.)

1134 J Stat Phys (2007) 128: 1125–1137

Fig. 5 Error as a function of L,
the parameter that determines
how often we use the hat power
series approximation. The line is
a fit by cL−n (color online)

Fig. 6 Time per point computed
as a function of L (color online)

Fig. 7 Error as a function of b,
the number of conformal maps in
a block. The data shown uses
N = 100,000, n = 12, and L = 4
(color online)

Figure 8 shows the time as a function of b for three values of N . (For all three curves
n = 12 and L = 4.) The curves have similar shapes, suggesting some sort of scaling. In
Fig. 9 we plot the same data but now divide the time by the minimum time for that value of

J Stat Phys (2007) 128: 1125–1137 1135

Fig. 8 Time per point computed
as a function of b. The three
curves shown from bottom to top
are N = 20,000, 50,000, and
100,000 (color online)

Fig. 9 Scaling plot for time per
point computed as a function of b

(color online)

N and divide b by
√

N . The resulting three curves collapse nicely. This indicates that the
optimal value of b is roughly proportional to

√
N . We have found that the optimal value is

well approximated by b = 0.12
√

N .
We have found that the error is typically well below L−n. To study which value of n

is optimal we do the following. We fix a value of n and then choose L so that L−n =
10−6. (The choice of 10−6 is ad hoc.) We then study the time per point as a function of N .
Figure 10 shows the resulting plots for n = 8,10,12,14. For the large values of N there is
little difference between n = 10,12,14, but they are significantly better than n = 8.

We have carried out the same simulations and generated the same plots for κ = 6. Quali-
tatively the curves are the same. The difference between the two values of κ varies with the
choices of the three parameters, but to a very crude approximation we have found that for
κ = 6 the algorithm is about 20% slower, and the error is about twice as large. (The error
for κ = 6 is still usually less than L−n.) The optimal value of b for κ = 6 is a bit smaller.
It is better approximated by b = 0.1

√
N . The analog of Fig. 10 for κ = 6 is virtually in-

distinguishable from the figure shown in which κ = 8/3. In particular, the time per point
is approximately O(N0.4). Taking n to be 10,12 or 14 give similar results, all significantly
better than n = 8.

1136 J Stat Phys (2007) 128: 1125–1137

Fig. 10 Time per point
computed as a function of N .
The four curves correspond to
n = 8,10,12,14. The line shown
has slope 0.4 (color online)

Acknowledgements The Banff International Research Station made possible many fruitful interactions. In
particular, I learned much of the material in Sect. 2 from conversations with Steffen Rohde and Don Marshall.
This work was supported by the National Science Foundation (DMS-0201566 and DMS-0501168).

Appendix Particular Hat Power Series

In this appendix we give the hat power series needed for the two particular discretizations
we have discussed. For the approximation that uses slits at an angle απ , we need to compute
the power series of ĥ where h(z) = (z + xl)

1−α(z − xr)
α . We have

ĥ(z) = z(1 + xlz)
−(1−α)(1 − xrz)

−α. (32)

The power series of the last two factors are given by the formula

(1 − cz)−α =
∞∑

k=0

α(α + 1) · · · (α + k − 1)

k! ckzk. (33)

For the approximation that uses vertical slits, we need to compute the hat power series of
h(z) = √

z2 − 4t + x. First consider g(z) = √
z2 − 4t . We have

ĝ(z) = z√
1 − 4tz2

= z

∞∑
k=0

1 · 3 · 5 · · · (2k − 1)

k! 2ktkz2k (34)

where the power series may be obtained from (33) with α = 1/2. Noting that h = f ◦g with
f (z) = z + c, the hat power series of h is just the composition of the hat power series for f

and g. The series for f is just

f̂ (z) = 1

1/z + c
= z

1 + cz
= z

∞∑
m=0

(−1)mcmzm. (35)

References

1. Amoruso, C., Hartman, A.K., Hastings, M.B., Moore, M.A.: Conformal invariance and SLE in two-
dimensional Ising spin glasses. Preprint cond-mat/0601711 (2006)

J Stat Phys (2007) 128: 1125–1137 1137

2. Bauer, R.: Discrete Loewner evolution. Ann. Fac. Sci. Toulouse Sér. 6 12, 433–451 (2003),
math.PR/0303119

3. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Conformal invariance in two-dimensional turbu-
lence. Nature Phys. 2, 124 (2006), nlin.CD/0602017

4. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Inverse turbulent cascades and conformally invariant
curves. Preprint nlin.CD/0609069 (2006)

5. Bernard, D., Le Doussal, P., Middleton, A.A.: Are domain walls in 2D spin glasses described by sto-
chastic Loewner evolutions? Preprint cond-mat/0611433 (2006)

6. Kennedy, T.: Computing the Loewner driving process of random curves in the half plane. Preprint
math.PR/0702071 (2007)

7. Lawler, G.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs,
vol. 114. American Mathematical Society, Providence (2005)

8. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 879–920 (2005), math.PR/0106036
9. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math.

118, 221–288 (2000)
10. Werner, W.: Random planar curves and Schramm–Loewner evolutions. In: Lecture Notes in Mathemat-

ics, vol. 1840, pp. 107–195. Springer, Berlin (2004), math.PR/0303354

	A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution
	Abstract
	Introduction
	Discretizing SLE
	A Faster Algorithm
	Choosing the Parameters
	Acknowledgements
	Appendix Particular Hat Power Series
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

